Developing ICPRB's Potomac Watershed Model using Soil & Water Assessment Tool

Kaye Brubaker Univ. of Maryland, College Park Cherie Schultz, ICPRB Jan Ducnuigeen, ICPRB Erik Hagen (former ICPRB)

Great Valley Water Resources Science Forum Oct. 7, 2009

Why a Potomac Watershed Model?

- Understand the physical processes associated with variability in water supply
- Understand the effects of human activities on water supply
- Predict potential effects of future climatic and land use changes
- Allow more accurate assessments of
 - drought risk
 - need for resource development
 - Implications for management

Why SWAT? (Soil & Water Assessment Tool)

- Ease of use, Portability
 - Free of charge (USDA Agricultural Research Service)
 - Model set-up GIS interface (ArcSWAT)
 - Changes to land use easy to implement
 - Once built, model runs at "Command" prompt
- Longevity
 - Future investigators can learn the model and keep it updated
 - Modeling system has a long history & should be supported in the future
- Spatio-temporal formulation
 - Considers spatial pattern on the landscape
 - Can simulate long periods using continuous time

Potomac Watershed Subdivision by 8-digit HUC

ptf #

and file Subbagin.1	2 UDITE LUCATERED Sail: MARGE Slapet 0 10 12/21/2007 12:00:00 AN			
.gw IIIE Subbasili.i.	Z HRU:S LUSE:FRSD SOII: VAUUS STOPE: U-IU IZ/ZI/ZUU/ IZ:UU:UU AN			
1000.0000	SHALLST : Initial depth of water in the shallow aquifer [mm]			
1000.0000	DEEPST : Initial depth of water in the deep aquifer [mm]			
#gdva005#	GW_DELAY : Groundwater delay [days]			
#ava005#	ALPHA_BF : BAseflow alpha factor [days]			
1000.0000	GWQMN : Threshold depth of water in the shallow aquifer requir			
#rvva005#	GW_REVAP : Groundwater "revap" coefficient			
#revapmn#	REVAPMN: Threshold depth of water in the shallow aquifer for "			
0.0000	RCHRG_DP : Deep aquifer percolation fraction			
1.0000	GWHT : Initial groundwater height [m]			
0.0030	GW_SPYLD : Specific yield of the shallow aquifer [m3/m3]			
0.0000	SHALLST_N : Initial concentration of nitrate in shallow aquife			
0.0000	GWSOLP : Concentration of soluble phosphorus in groundwater co			
0.0000	HLIFE_NGW : Half-life of nitrate in the shallow aquifer [days]			
#bva005#	B_BF: Baseflow "b" exponent			

ptf #

.mgt file Subbasin:12 HRU:5 Luse:FRSD Soil: VA005 Slope: 0-10 11/30/2007 12:00:00 AM ARCC

0 | NMGT:Management code

Initial Plant Growth Parameters

0 IGRO: Land cover status: 0-none growing; 1-growing PLANT ID: Land cover ID number (IGRO = 1) 0 0.00 LAI_INIT: Initial leaf are index (IGRO = 1) BIO INIT: Initial biomass (kg/ha) (IGRO = 1) 0.00 0.00 PHU_PLT: Number of heat units to bring plant to maturity (IGRO = 1) General Management Parameters 0.20 BIOMIX: Biological mixing efficiency 72.00 CN2: Initial SCS CN II value USLE_P: USLE support practice factor 1.00 0.00 BIO MIN: Minimum biomass for grazing (kg/ha) 0.000 FILTERW: width of edge of field filter strip (m) Urban Management Parameters 0 IURBAN: urban simulation code, 0-none, 1-USGS, 2-buildup/washoff URBLU: urban land type 0 Irrigation Management Parameters IRRSC: irrigation code 0 IRRNO: irrigation source location 0 0.000 FLOWMIN: min in-stream flow for irr diversions (m^3/s) 0.000 DIVMAX: max irrigation diversion from reach (+mm/-10^4m^3) 0.000 FLOWFR: : fraction of flow allowed to be pulled for irr Tile Drain Management Parameters 0.000 DDRAIN: depth to subsurface tile drain (mm) 0.000 TDRAIN: time to drain soil to field capacity (hr) 0.000 GDRAIN: drain tile lag time (hr) Management Operations: NROT: number of years of rotation 1 Operation Schedule: 0.150 1 3600.00000 0.00 0.00000 0.00 0.00 #c5d# 7 0.200 6 108 #c5g# 1.200 5 #c5d# \cap

Linear Reservoir Model

$$S = KQ$$

Where

S = Storage Q = Discharge (volume/day) K = Recession coefficient (days)

Note that, for pure recession,

$$\frac{dS}{dt} = -Q = -\frac{1}{K}S$$

This has the solution

$$S(t) = S_0 \exp(-\frac{1}{\kappa}t)$$

Which plots as a straight line on a semi-log graph

Advantages of Linear Model

- Reasonable physical concept outflow is greatest when reservoir is full
- Closed-form solution
- A parameter with dimension of time easy to understand

But is it realistic for GW flow?

- Observations indicate that real baseflow aquifers (e.g., in the Shenandoah Valley) don't behave as we would like!
- Can show with physical arguments (Wittenberg 1999) that, with typical assumptions for unconfined aquifers, a better assumption would be

$$Q \propto S^2$$

 $S = aQ^{1/2}$

Wittenberg (1999) Model

 Analyzed rivers in Germany and found a more general result

$$S = aQ^b$$

Found values of *b* between 0 and 1.1, with a mean value of 0.49.

(Set b = 1 to get the linear model.)

Incorporation into SWAT

- Wrote new groundwater module for SWAT
- Calculates groundwater flow as an explicit function of state variable for GW storage

$$Q_{bf} = \left(\frac{S - S_{\min}}{a}\right)^{1/b}$$

where

S is shallow aquifer storage [L] S_{min} is the minimum storage for GW flow [L] *a* is a scale parameter [weird dimensions] *b* is a coefficient [dimensionless]

Shenandoah Model

- 3 HUCs
- 28 Subbasins
- 489 HRUs

Calibration Principles

- physical fidelity
- parsimony
- sensitivity, and
- repeatability.

Parameters for Calibration

In HRU files	ESCO	Adjustment factor for evaporation from soil	Vary by soil type
	EPCO	Adjustment factor for plant uptake of	two values - crop and
		water by evapotranspiration	forest
	SLSOIL	Subsurface flow length (interflow)	Vary by soil type
	CANMX	Maximum canopy interception	two values – crop and forest
In GW files	GW_DELAY	Time lag for appearance of	Assigned on the basis
		groundwater flow in stream	of parent geology as
	ALPHA_BF	Coefficient in groundwater recession	inferred from soil type
	BETA_BF	Exponent in groundwater recession	
In BASINS	SURLAG		Applies to entire
file			model domain
In SUB files	CH_N1	Manning's "n" for the tributary channels	Vary by dominant geology of subbasin
In RTE files	CH_N2	Manning's "n" for the main channel	Vary by geology corresponding to main channel

Calibration: Soil-Rock Associations

-				
Soil Name	Soil ID(s) in Shenandoah Model	Parent rock*	Parameter code for ESCO and SI SOII	Parameter code for ALPHA_BF and Beta_BF
BERKS	VA066	shale, siltstone and fine grained sandstone	_va066	_\$\$\$
CARBO	VA002	limestone bedrock	_va002	_lim
EDGEMONT	WV114	quartzitic rocks	_wv114	_qua
FREDERICK	VA003	dolomitic limestone with interbeds of sandstone, siltstone, and shale	_va003	_lss
HAGERSTOW N	VA069, WV010	hard gray limestone	_va069	_lim
LAIDIG	VA016	colluvium from sandstone, siltstone, and some shale benches and foot slopes	_va016	_col
LILY	VA005, WV119	sandstone	_va005	_san
MOOMAW	VA004	alluvium derived from acid sandstone, quartzites, and shales	_va004	_col
MYERSVILLE	VA006	basic crystalline rocks, including greenstone	_va006	_cry
WEIKERT	VA001	interbedded gray and brown acid shale, siltstone, and fine-grained sandstone	_va001	_SSS