

GSFLOW Coupled Groundwater/Surface-Water Model: Background and Possible Applications in the Great Valley

Great Valley Water Resources Science Forum

October 7, 2009

Why was GSFLOW developed?

- To improve our ability to simulate and understand
 - Watershed hydrologic processes and water availability
 - Links between hydrologic processes and climate, vegetation, land uses, watersupply development, and ecology

Uses of GSFLOW

- Determine flow rates and storage volumes of water throughout a watershed—from the tree canopy to deep aquifers:
 - Evaporation and plant transpiration
 - Soil infiltration and interflow
 - Snowpack generation and depletion
 - Groundwater recharge
 - Streamflow generation

Components of Streamflow for a Year of Below-Average Precipitation, Sagehen Creek, Truckee, CA

Uses of GSFLOW

Simulate both low-flow (baseflow and drought) and high-flow (storm) conditions within a watershed

Uses of GSFLOW

Simulate hydrologic response to changing land uses, population growth, and possible future climate conditions

Projected average maximum daily temperature, Tahoe Basin, California and Nevada

What is GSFLOW? A Basin-Scale Model Based on the USGS PRMS Watershed Model and MODFLOW Groundwater Flow Model

Enhanced Modeling Capabilities Developed for GSFLOW

Unsaturated-zone flow below soils, streams, and lakes

Flow, storage, and ET in the unsaturated zone and recharge to the water table in response to infiltration at land surface

Enhanced Modeling Capabilities Developed for GSFLOW

- Enhanced soil-zone dynamics (capillary, gravity-flow, and preferential-flow reservoirs)
- Enhanced streamflow simulation

Some of the Hydrologic Processes Simulated

- Potential ET
- Canopy interception
- Snowpack accumulation, melting, sublimation
- Surface-water runoff
- Interflow
- Infiltration to soil zone
- ET within soil zone
- 1-D Unsaturated-zone flow, storage, and ET
- 3-D Groundwater flow
- Streamflow
- Lakes

Climatic and Hydrologic Drivers

- Precipitation
- Air Temperature
- Solar radiation
- Groundwater withdrawals
- Groundwater flow and water-level conditions along boundary of simulated area

Spatial Discretization—PRMS hydrologic response units (HRUs) are intersected with MODFLOW finite-difference cells

Sagehen Creek watershed, Truckee, CA

Some Important Design Criteria for GSFLOW Development

- Calculate and provide detailed waterbudget information for the various hydrologic processes in both space and time
- Ensure that the model conserves mass
- Allow simulations using only PRMS or MODFLOW to facilitate initial calibration of model parameters prior to a full GSFLOW (coupled-model) simulation

Initial GSFLOW Applications by the USGS

Trout Lake Watershed, WI Black Earth Creek Watershed, WI Spring Creek Watershed, PA Incline Basin near Lake Tahoe, Nevada ■ Walker Lake Watershed, NV Santa Rosa Plain, northern CA ■ Rialto-Colton Basin, southern CA

Possible Applications in the Great Valley

Map showing existing and proposed ground-water flow models developed for the Shenandoah Valley.

Opequon Creek Watershed

Figure 1. Location of the Opequon Creek Watershed area and in Virginia and West Virginia.

Link the transient groundwater-flow model of Opequon Creek watershed with a PRMS model

Opequon Creek

Benefits

Improved representation of hydrologic processes in the watershed and links among land-surface, subsurface, and surface-water hydrologic systems

Improved water budgets throughout all hydrologic components of the watershed

Data Considerations

Climate inputs:

Daily precipitation and air-temperature data
 Land-surface processes:

 Evapotranspiration
 Canopy interception
 Snowpack dynamics
 Surface runoff
 Soil-zone processes

Data Considerations

Streamflow and Springs
 Subsurface processes:
 Unsaturated-zone flow

Groundwater flow, including wells

Figure 10. Map showing boundary conditions and the active and inactive model grid of the ground-water flow model developed for the Opequon Creek watershed, Virginia and West Virginia. **Discretization of** Watershed:

PRMS HRUs could be coincident with MODFLOW cells, but not required

Calibration Considerations

A multistep process:

- PRMS transient (daily) calibration
- MODFLOW steady-state calibration
- Coupled GSFLOW transient (daily) calibration
- Calibration data:
 - Streamflow
 - Groundwater levels

GSFLOW Code and Documentation Report Available online:

USGS Water Resources Groundwater Software webpage *http://water.usgs.gov/software/lists/ground

water/

Questions?

