## Seasonal Water Budget Approach for Assessing Ground Water Availability

#### Cherie Schultz, Jim Palmer, Debby Tipton Interstate Commission on the Potomac River Basin (ICPRB)

November 17, 2004

## **Objective**

#### Evaluate whether a seasonal water budget (SWB) can provide a reliable basis for assessment of ground water availability in the fractured bedrock aquifers of the Potomac River basin

–Assessments of availability via ground water modeling can be prohibitively expensive on large scale

- –Annual water budgets (annual recharge ~ annual baseflow) neglect seasonality and storage
- -Seasonal water budgets are viewed as difficult to compute/unreliable (?)

# Approach

- Compute 42-year time series of SWB components (1960 – 2002)
- Use storage estimates from streamflow recession analyses to obtain seasonal recharge estimates
  - Use of method has long history (Meyboom 1961; Bevans 1986; Rutledge and Daniels 1994 ...)
  - Compare results with RORA and with well data
- Construct indicator of summer availability:
  - V<sub>Q3</sub> = beginning-of-summer storage + summer recharge
  - Plot frequency curves to estimate dry year availability

#### **Study Area:**

#### **Monocacy River and Catoctin Creek Drainages**



Four Gaged Sub-basins

– (periods of record from 1960 – 2002)

Catoctin Cr: 01637500

Upper Monocacy: 01639000

Big Pipe Cr: 01639500

Bennett Cr: 01643500



## Seasonal Water Budget for Sub-basin Aquifers

| ∆ <b>S</b> <sub>i</sub> | = | S <sub>i+1</sub> - S <sub>i</sub> | = | inflows – outflows                                         |  |  |
|-------------------------|---|-----------------------------------|---|------------------------------------------------------------|--|--|
|                         |   |                                   | = | $R_i - (q_{BFi} + RET_i + W_i)$                            |  |  |
|                         |   |                                   | = | R <sub>Net i</sub> - (q <sub>BF i</sub> + W <sub>i</sub> ) |  |  |

| ∆S <sub>i</sub> | = | change in aquifer storage in time interval, $\Delta t = t_{i+1} - t_i$ |
|-----------------|---|------------------------------------------------------------------------|
|-----------------|---|------------------------------------------------------------------------|

- volume stored in aquifer at time t<sub>i</sub>
- R<sub>i</sub> = ground water recharge

S<sub>i</sub>

- $R_{\text{Net i}} = \text{net recharge, } R_i \text{RET}_i$
- q <sub>BF i</sub> = aquifer discharge to stream base flow
- **RET<sub>i</sub> = riparian evapotranspiration**
- W<sub>i</sub> = ground water withdrawals

### **Storage and Recharge Estimates**

Water budget equation can be solved for net recharge:

$$R_{\text{Net i}} = \Delta S_i + (q_{BFi} + W_i)$$

Aquifer storage estimate from base flow recession analyses:

 $S_i = (q_{0,i} K) / \ln 10$ 

where

- q<sub>0, i</sub> = initial (beginning-of-quarter baseflow) value
- K = recession index

# Storage estimate is based on simple approximation for baseflow recession:

q (t) ~ 
$$q_0 e^{-k(t-t0)}$$

where q(t) = stream discharge = baseflow, during period of recession

S = volume stored in aquifer above zero-flow level q<sub>0</sub> = baseflow at initial time K = recession index (days) = In 10/k

### Estimates of "Beginning of Quarter" Baseflow Values

q<sub>0, i</sub> estimated from 60-day means of log (daily baseflows):



### Estimates of "Beginning of Quarter" Baseflow Values

q<sub>0, i</sub> estimated from 60-day means of log (daily baseflows):



# **Recession Index Results**

(for Oct-Mar, using USGS program, RECESS)

#### **Recession Index, K (days)**

|                             | Bennett | Big Pipe | Upper    | Catoctin |
|-----------------------------|---------|----------|----------|----------|
|                             | Creek   | Creek    | Monocacy | Creek    |
| Count                       | 16      | 14       | 16       | 30       |
| 90 <sup>th</sup> Percentile | 128     | 104      | 45       | 111      |
| 75 <sup>th</sup> Percentile | 105     | 94       | 37       | 59       |
| Median                      | 80      | 71       | 33       | 45       |
| 25 <sup>th</sup> Percentile | 57      | 66       | 32       | 35       |
| 10 <sup>th</sup> Percentile | 56      | 64       | 26       | 31       |

#### Comparisons of Predicted Storages, S<sub>i</sub>, with Other Results

 RORA: alternative storage-based approach (USGS automated program)

#### Monocacy/Catoctin well data

- Wells were identified with > 3 years of continuous periods of record with ~ monthly observations
- Well data was temporally smoothed: took 3 month means, centered around beginning of quarters
- Well data was spatially smoothed: took means of available wells within or near sub-basin of interest
- Average well levels were plotted for time period in which periods of record overlapped

# Wells Used for Comparisons











#### Summer Water Availability (using SWB time series from mean BF storage-based approach)

**A simple indicator** 

summer availability ~ sum of beginning-ofsummer storage and summer recharge:

$$V_{Q3} = S_{Q3} + R_{Q3}$$

### **Frequency Curves for V\_{Q3}**



# Annual vs. SWB Summer Availability Predictions

#### **Recurrence Intervals for Annual Baseflow (gpd/acre)**

|                          | 2-year | 10-year | 20-year |
|--------------------------|--------|---------|---------|
| Bennett (1643500)        | 640    | 435     | 389     |
| Big Pipe (1639500)       | 624    | 398     | 345     |
| Catoctin (1637500)       | 630    | 400     | 346     |
| Upper Monocacy (1639000) | 410    | 270     | 234     |

#### **Recurrence Intervals for V<sub>Q3</sub> (gpd/acre)**

|                          |        |         |         | 2001 GW   |
|--------------------------|--------|---------|---------|-----------|
|                          | 2-year | 10-year | 20-year | Withdraw. |
| Bennett (1643500)        | 408    | 223     | 149     | 6         |
| Big Pipe (1639500)       | 446    | 190     | 141     | 12        |
| Catoctin (1637500)       | 208    | 65      | 60      | 25        |
| Upper Monocacy (1639000) | 116    | 48      | 42      | (15?)     |

## Annual vs. Summer Availability Predictions

#### **Recurrence Intervals for Annual Baseflow (gpd/acre)**

|                          | 2-year | 10-year | 20-year |
|--------------------------|--------|---------|---------|
| Bennett (1643500)        | 640    | 435     | 389     |
| Big Pipe (1639500)       | 624    | 398     | 345     |
| Catoctin (1637500)       | 630    | 400     | 346     |
| Upper Monocacy (1639000) | 410    | 270     | 234     |

#### **Recurrence Intervals for V<sub>Q3</sub> (gpd/acre)**

|                          |        |         |         | 2001 GW   |
|--------------------------|--------|---------|---------|-----------|
|                          | 2-year | 10-year | 20-year | Withdraw. |
| Bennett (1643500)        | 408    | 223     | 149     | 6         |
| Big Pipe (1639500)       | 446    | 190     | 141     | 12        |
| Catoctin (1637500)       | 208    | 65      | 60      | 25        |
| Upper Monocacy (1639000) | 116    | 48      | 42      | (15?)     |

### Conclusions

- SWBs may provide useful tool for estimating water availability in Potomac sub-basins underlain by fractured bedrock aquifers
- For sub-basins with short baseflow recession indices, SWBs indicate much lower summer availability than annual recharge estimates