

Ground-Water Modeling

Synthesizing Hydrogeologic Information for Water Resources Management

Allen M. Shapiro U.S. Geological Survey Reston, Virginia

Water Resources Management

How will water-resources management scenarios effect ground-water and surface water ?

Physical Model – Sand Box

The Underlying Concept in Ground-Water Modeling

change in volume in Δt $\int_{t+\Delta t} -V_t = \sum_i \left[Q_i(t)\right] \Delta t$

summation of sources and sinks in Δt

Also applicable to smaller volumes of aquifer material...

change in volume in ∆t

$$V_{t+\Delta t} - V_t = \sum_i \left\lfloor Q_i(t) \right\rfloor \Delta t$$

summation of sources and sinks in Δt

Mathematical Ground-Water Flow Model

Mathematical models of ground-water flow have been successfully applied to fractured-rock aquifers...

Granite and schist, Mirror Lake watershed, Grafton County, NH

Madison Limestone, Rapid City, SD

Mirror Lake Watershed, Hubbard Brook Experimental Forest

Distance, in meters

Madison Limestone, Rapid City, SD

Ground-water modeling of fractured-rock aquifers over the well field dimensions...

Borehole H1 - Mirror Lake Watershed

Grafton County, New Hampshire

USGS

Aquifer Test - FSE Well Field Mirror Lake, New Hampshire

USGS 30 meters

FSE-1 FSE-4 FSE-5 FSE-9 FSE-6

Simulated Drawdown

Drawdown (meters)

USGS

Finite-Difference Model for Ground-Water Flow

Conceptual Model of Aquifer Heterogeneity

Objectives:

- Quantify ground-water elevations and stream discharge subject to known or assumed natural and anthropogenic constraints
- Consider scales of model investigations from small drainages (several sq. miles) to regional drainages (100's of sq. miles)

Data Requirements:

Geologic structure

Stream flows

Ground-water elevations

Significant sources and sinks of water

Aquifer properties - heterogeneity

Recharge – spatial distribution

Generalized hydrogeologic section through the Valley and Ridge (Modified from Wolfe and others, 1997)

Data Requirements:

Geologic structure

Stream flows

Ground-water elevations

Significant sources and sinks of water

Aquifer properties - heterogeneity

Recharge – spatial distribution

USGS 01644280 BROAD RUN NEAR LEESBURG, VA PROVISIONAL DATA SUBJECT TO REVISION

DISCHARGE, CUBIC FEET PER SECOND

Most recent value: 19 12-03-2002 14:00

Data Requirements:

Geologic structure

Stream flows

Ground-water elevations

Significant sources and sinks of water

Aquifer properties - heterogeneity

Recharge – spatial distribution

Breaks in the plot represent a gap of at least one calendar year between two consecutive points. Download a presentation-quality graph

Data Requirements:

Geologic structure

Stream flows

Ground-water elevations

Significant sources and sinks of water

Aquifer properties - heterogeneity

Recharge – spatial distribution

Data Requirements:

Geologic structure

Stream flows

Ground-water elevations

Significant sources and sinks of water

Aquifer properties - heterogeneity

Recharge – spatial distribution

Borehole H1 Mirror Lake Watershed, NH

Acoustic

FM flowmete

Optical

Data Requirements:

Geologic structure

Stream flows

Ground-water elevations

Significant sources and sinks of water

Aquifer properties - heterogeneity

Recharge – spatial distribution

Hydrogeologic conceptual model – an iterative process

- Improve/Focus data collection efforts
- Ground-water, surface-water resources management

• Time line of events

2003: Preliminary regional ground-water flow model Identify smaller drainages for model investigation Identify data deficiencies

2004 - 2005: Revise regional model & selected smaller drainages

2006 – 2008: Revise regional model, additional smaller drainages, conduct post-audit

≥USGS