

science for a changing world

Hydrologic Characterization and Regional Ground Material Indeking in Fractured Rock Andreas

Synthesizing Helerogeneity and Scale

Allen M. Shapiro

U.S. Geological Survey

Sand and Gravel Aquifer

Cape Cod, MA modified from Hess *et al.* (1992)

Granite and Schist

Hydrologic Characterization & Modeling In Bedrock Aquifers ~ 100 meters ?

What degree of *detail* is required and can we *characterize* the details?

Objectives of the Investigation?

Distribution of Hydraulic Conductivity

Steady-State Hydraulic Head

Hydrologic Characterization ~ 100 meters ?

Yes, we can!

Characterizing Fractured Rock over Dimensions ~ 100 meters

Surface Geophysics

Drilling & Coring

USGS

Coupling Hydrologic Testing & Geophysics

Borehole Geophysics

Ground-Water Modeling

Hydrologic Testing

Borehole Scanning

Seismic & Radar Tomography

Single-Hole Methods of Characterization

FSE-6

USGS

Cross-Hole Methods of Characterization

Seismic Tomography

Finite-Difference Model for Ground-Water Flow

Simulated Drawdown

Drawdown (meters)

Hydrologic Characterization ~ 100 meters ?

Don't forget the obvious!

USGS Fractured-Rock Field Research Site

≈USGS

Mirror Lake Watershed, Hubbard Brook **Experimental Forest**, **Grafton County, NH** ME VT Map 'area New Hampshire MA Mirror Lake Explanation Ŝ Bedrock Well • Well Field 1 km i mile Contour Interval 60 m **CO Well Field FSE Well Field** 120 Distance, in meters 12 80 40 13. 0 40 80 120 40 80 120 0 0

Distance, in meters

Hydraulic Conductivity and Fractures versus Depth

Bedrock Well CO-3

Bedrock Well FSE-6

Aquifer Test - FSE Well Field

Aquifer Test - CO Well Field

Aquifer Test - FSE Well Field

Aquifer Test - CO Well Field

Hydrologic Characterization ~ kilometers ?

Objectives, degree of detail, and capabilities?

Hydrologic Characterization ~ kilometers ?

Can we (with confidence) ? ≊USGS

Characterizing Fractured Rock over Kilometers

Remote Sensing

Regional Hydrology

Geologic Mapping

Ground-Water Flow and Transport Modeling

Surface Geophysics

Distributed-Parameter Model: (to define a better understanding of physical processes)

Hydraulic Conductivity Measurements at Mirror Lake

Confidence in estimates of bedrock properties...

Hydraulic and chemical stresses applied in the bedrock

Estimating "Bulk" Properties of the Bedrock (10's meters)

Generic Description of Time-Varying Drawdown in a Pumped Well

Hydraulic/Aquifer Testing:

≥USGS

Logarithm of Drawdown

Washington Metro Tunnel Leakage Bethesda, Maryland

≥USGS

Water in Metro's Basement

Seepage Ruining Rail Equipment In Most Tunnebr

And products of the second

The state optimized in the state optimized in

There is no control of a second secon

"The original of least are represented when and on

Madison Limestone Rapid City, South Dakota

≈USGS

Hydraulic Conductivity Measurements at Mirror Lake

Tritium Concentrations - 1992

Mirror Lake Watershed, New Hampshire

Laboratory-Scale Experiments

Tritium Versus Modeled CFC-12 Recharge Year

Tritium Versus CFC-12 Concentration

Model Results Versus ³H and CFC-12 Data

(Shapiro, 2001)

Tracer

Injection

0.1 m
$$D_{eff} \ll D_w$$

5 m

Pumping

100's m

 $D_{eff} >> D_{w}$

Some closing thoughts...

1. Objectives, degree of detail, and capabilities

2. Synthesis (modeling) starting on day $1 \rightarrow$ data collection

3. Don't forget the obvious (recharge, water balance, stream flow, geologic structure, surficial geology, . . .)

4. Can we characterize regional ground-water flow in bedrock aquifers with confidence?

