BRASS Bedrock Regional Aquifer Systematics Study

Objective: Understand geologic controls on ground water behavior and chemical evolution in fractured bedrock

BRASS mapping and hydrogeologic studies in crystalline terranes

Pinardville Study Area

Bedrock geologic Map of the Pinardville 7.5' Quad, NH

> Source-water and Wellhead Protection Zones

Correlation between Fractures and Well Data

Pinardville Quadrangle: Comparison of model results with detailed mappingvariables (left) versus just the statewide variables (right).

Added value of field-bas	sed methods for well-yield-pr	robability forecasting
Probability of obtaining 40 gallons per minute (gpm) or more by 400 feet well depth	Percentage of quadrangle meeting probability criteria with detailed geologic mapping variables included	Percentage of quadrangle meeting probability criteria with detailed geologic mapping variables excluded
Pinardville Quadrangle:		
20	8.10	3.47
25	4.32	2.42
30	2.66	0.57
35	1.66	0.04
40	0.90	0.03
45	0.52	0.01
50	0.28	0
60	0.09	0
70	0.02	
USGS		

BRASS 1:10K-scale geologic map of USFS Hubbard Brook Experimental Forest--site of USGS Mirror Lake fractured-rock research site

Mirror

Lake

Hubbard Brook fracture data

Frequency-azimuth plots (Rose diagrams)

Digital Data Acquisition

3Com Palm III PDA

- affordable
- pen-based
- portable
- widely used

Laptop Computer - Windows OS

Rockwell PLGR+96 GPS

- PPS accuracy
- +/- 5 m
- 999 waypoints
- ASCII out

Alternatives: DGPS Post-processing SA

Steeply dipping S2 cleavage & F2 folds

Combined with sub-horizontal S1

Control bedrock topography and produce NE trending ridges and valleys

> Directional anisotropy in the bedrock is a function of:

> > Corrugated S1

Bedrock topography

S2 cleavage with vugs

Steep fractures to NE & NW

Elliptical drawdown oriented NE during 11 day pump test

Preliminary results from Lyford and others

Drawdown agrees with directional anisotropy in bedrock

•The Lawrenceville area consists of gently-dipping thrust sheets in a broad synform.

•The lithologies in these sheets have greatly differing ground-water yields

•Ground water yields in these rocksare controlled primarily by weathered-out voids parallel to foliation, not steeply-dipping brittle fractures--hence the strong lithologic control

 Careful geologic mapping can determine promising new sites for ground-water exploration in this area

LOUDOUN COUNTY DATABASE

• High-resolution DEM (15-meter grid size)

--assembled from 700 tiles by Kerry Lagueux & Luke Blair USGS

≊USGS

LOUDOUN COUNTY DATABASE

• Detailed geologic map (1:50,000-scale map of 1:24,000scale geology)

Southworth and others, 1999 USGS Open-File Report 99-150

LOUDOUN COUNTY DATABASE

•Yield data for 3,561 wells in western Loudoun Co.

•Usable for time-trend and lithology-yield analyses, and variography

YIELD AND GEOLOGY

1. Basement vs. Cover

THERE IS A SIGNIFICANT DIFFERENCE IN MEAN YIELD BETWEEN WELLS IN BASEMENT AND COVER

YIELD AND GEOLOGY

2. Geologic map units

THERE IS A SIGNIFICANT DIFFERENCE IN MEAN YIELD BETWEEN WELLS IN HARPERS PHYLLITE AND OTHER ROCKS, AS WELL AS DIFFERENCES BETWEEN OTHER PAIRS OF LITHOLOGIES

YIELD AND GEOLOGY

3. Generic rock types

≥USGS

THERE IS A SIGNIFICANT DIFFERENCE IN MEAN YIELD BETWEEN WELLS IN GRANITIC GNEISS AND TWO OTHER ROCK TYPES

Derivative map of western Loudoun County grouping geologic map unit by yield

TIME-TREND ANALYSIS SHOWS THAT:

Mean yield has increased over time...

...but mean depth drilled has increased at a slightly greater rate...

...so that <u>mean yield per foot drilled</u> has actually <u>decreased</u> over time

NORTHERN BLUE RIDGE BASEMENT, WESTERN LOUDOUN COUNTY

•1313 wells

•~800,000 pairs of wells to compare

NORTHERN BLUE RIDGE BASEMENT, WESTERN LOUDOUN COUNTY --50-METER LAG (local scale)

Two-dimensional variogram surface:

A north-south trend visible

Omnidirectional variogram:

High continuity at local scale

NORTHERN BLUE RIDGE BASEMENT, WESTERN LOUDOUN COUNTY --250-METER LAG (larger scale)

Two-dimensional variogram surface: ______ two NE-SW directional trends discernable

High continuity at local scale; "hole" effect at 5000m

Possible NE-trending structures correlative with variography in northern Blue Ridge

Blue Ridge

Isolate water-transmitting Fractures in deep hole Age-date recharge from Blue Ridge: older with depth?

NCDENR/DWQ/GW Resource Evaluation Program

2010

ston-Salen

Nooresville

Piedmont & Mountains Project 2000 Update

NCDENR/DWQ/GW Resource Evaluation Program

2010

ston-Salen

Nooresville

Piedmont & Mountains Project 2000 Update

BRASS mapping and hydrogeologic studies in sedimentary/igneous terranes

LOUDOUN COUNTY STUDIES

Fracture flow hydrogeology of the Culpeper basin

Mike Ryan Herb Pierce Joe Smoot Dave Sutphin

USGS Chesapeake Bay watershed nutrient study

- Model influx of nitrogen into Bay
- "Targeted watersheds" in high-nitrate-source areas underlain by fractured bedrock
- What is effect of bedrock geology on base flow and groundwater travel times?

Geology of East Mahantango Creek watershed --anticline in Devonian-Mississippian sandstones and shales

East Mahantango Creek watershed bedrock fracture framework

DC

WE38 subwatershed: ground water age-dating study area

Dob

WE38 SUBWATERSHED

EAST PIEZOMETER TRANSECT

WEST PIEZOMETER TRANSECT

East piezometer transect

East Piezometer Transect

--Preferred CFC-12 ages NE of stream are older...

..than those underneath and SW of stream

..although these ages are really mixture ages!

West Piezometer Transect

--Ages are even more mixed, but % of young water (2nd #) shows older waters generally prevailing to NW

...and younger to SE

SGS

		_	
P		-	
	ч.	_	
-	-		

N	Ξ							SW
		E1	E2	E3	E4	E5	E6	E7
	10	19.9/90	(47.2)	(48.2)	8.7/12.6/78	10.9/100		(5.5)
÷	20	(42.5)		(46.4)	6.3/13.8/85			
F	30		(41.4)	(44.4)	12.9/16.2/78			
ept	35						1.4(5.4)	
ŏ	45			(33.7)	18.2/21.5/67	8.9/100		
	60				21.4/19.2/57	12.6/82		

drainage

v	W1	W2	W3	W4	W5
10			12.5/100		15.4/11.9/100
20	27.9/95	8.7/23	10.9/45		
30		17.4/41	28.1/100	22.4/94	
40		16.9/17		14.4/63	
45			20.6(24)		
65			6.4/38		0.2/0/100

.,

Bedding-plane anisotropy explains disparity in ground-water ages, travel times

Layered-density, isotropic fracture model Young, equal GW ages at discharge

Bedding-plane fracture model Predominantly young water downdip to discharge; old water updip to discharge

WE38 SUBWATERSHED

CORE

Kevin Troutman examining core

Kevin Troutman measuring core with Brunton

Fracture Density, WE38 and USGS-ARS-1 cores

Cross-hole pump tests at Mahantango will test effect of anisotropic fracture geometry on GW flow