Estimating irrigation withdrawals

Susan S. Hutson
U.S. Geological Survey
Mid-Atlantic Water Availability Workshop
June 7-8, 2005

Problems in estimating IR wu

- Unknown number of irrigated acres
- □ Single or multiple cropping practice
- Source of water, surface-, ground-, reclaimed waste water
- Application rates for irrigation system
- Additional irrigation uses, such as frost protection or harvesting
- Permitted amounts and use amounts

Methods for estimating irrigation withdrawals

- Metering
- Metering of a statistically determined sample
- Application of coefficients for crops or irrigation systems

Reported data required through permitting

Metering irrigation water withdrawals

- Rarely are all ground-water wells and surface-water intakes metered.
- Extent of the metering determined by the need for the data in decisionmaking.
- Meters are either in-line meters or non-invasive flow meters

Metering irrigation water withdrawals

- Water meters—properly selected and maintained—can be the most accurate and easiest method for measuring water flow.
 - Improve water-use efficiency
 - Determine pumping plant efficiency to allow water to be supplied as inexpensively as possible
 - Detect potential well, pump or irrigation system problems

Metering irrigation withdrawals Units of measurement

- 1 acre-inch= volume of water that would cover an acre one inch deep
- I acre foot = volume of water that would cover an acre one foot deep
- 1 cubic foot=volume of water that would fill a container by one foot long and one foot deep

Metering water withdrawals Flow rates

1 1 gpm= the rate of flow necessary to fill a gallon container in one minute

1 cfs= the rate of flow I an area of 1 square foot, and moving at a velocity of one foot per second

Metering water withdrawals Inline flow meters

- Impeller meters
 - Operate continuously
 - Direct flow read-outs
- Positive displacement meters
 - Small irrigation systems
 - Operates with a timer

Metering irrigation water use USGS metering study

Comparison of two approaches for determining ground-water discharge and pumpage in the Lower Arkansas River basin, Colorado, 1997-98

by Russell G. Dash, Brent M. Troutman, and Patrick Edelmann

Water Resources Investigations Report 99-4221

Water Resources Investigations Report 99-4221

- Results
 - Totalizing flowmeter measurements
 - □ Inline meter
 - Portable flowmeter measurements
 - Power conversion calculations and computations of pumpage

Irrigation water use Statistical sampling--Benchmark farm study

- A Field and statistical modeling study to estimate irrigation water use at benchmark farm study sites in southwestern Georgia, 1995-1996
- by Julia L. Fanning, Gregory E. Schwarz, and William C. Lewis
- Water-Resources Investigations Report 00-4292

Irrigation water use—Indirect method Pump capacity & # applications

Variables: number of applications, hours per application, pump capacity

applic * hrs * conversion factor = mgd

Irrigation water use—indirect method Crop Consumptive Irrigation Requirement CCIR

□ Variables: Acreage, CCIR

applic *acreage * CCIR * conversion to mgd/ 365

4*40 *0.90 acres/ft * 0.3259 mil gals /365 = 0.129 mgd acre

Estimating irrigation water use Soil classification, region, crop type

Variables: crop type, acreage, # applic, soil classification, location

Applic * rate of applic * acreage * conversion factor to mgd / 365= mgd

4 * <u>0.298 acre-ft</u> * 40 acres * <u>0.3259 million gallons</u>/ 365 = 0.043 mgd acre acre-foot

Non-crop irrigation Golf courses

Variables: number of holes

Unknown: number of acres

Approach: generalize the # acreage

Fairways

Greens

Tees

Irrigation water use Golf course requirement

- □ Greens
 - ~2 acres
 - 4 in/wk growing season 1.5 in/wk non-growing

- Fairways
 - ~40 to 50 acres
 - 1.25 to 1.5 in/wk
- Tees
 - 3.5 to 4.0 acres
 - 1.25 to 1.5 in/wk

Irrigation water use Permit reporting

■ Water allocation or water withdrawal?