

StreamStats: A Web Site for Stream Information

By Kernell Ries

U.S. Department of the Interior U.S. Geological Survey MD-DE-DC District 410-238-4317 kries@usgs.gov

- Description of need for streamflow statistics and problems with providing them
- Description of StreamStats
- Status
- Implementation Process
- Regional StreamStats activities

Examples of Streamflow Statistics

- 100-year flood
- Average annual streamflow
- Average streamflow for August
- 7-day, 10-year low flow
- 90-percent duration flow

Uses of Streamflow Statistics

- Design of structures such as roads, bridges, culverts, dams, locks, and levees
- Water resources planning and management
- Flood-plain mapping for zoning and insurance rate setting
- Instream flow determinations for pollution control and habitat protection
- Design and permitting of facilities such as wastewater-treatment plants, hydropower plants, and water-supply reservoirs

Statistics for Gaged Sites

 Computed from streamflow records using standard methods

Problems:

 Statistics in old reports are sometimes difficult to obtain

 USGS labor cost for information requests is high
 Not possible to operate gaging stations everywhere streamflow statistics are needed

Estimates for Ungaged Sites

- Streamflow Statistics are estimated from regression equations that relate flows to basin characteristics.
- Examples of basin characteristics: Basin area, slope, shape, climate, vegetation cover, degree of urbanization, geology, ...
- Usually developed on a State-by-State basis through the cooperative program

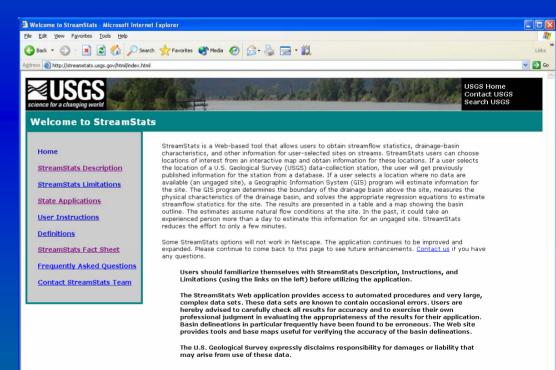
Example Regression Equation

- Regression equations take the form: $Q_{100} = 0.471 A^{0.715} E^{0.827} SH^{0.472}$
- where:
 - Q₁₀₀ is the 100-year flood flow, cubic feet per second
 - A is drainage area, in square miles
 - **E** is mean basin elevation, in feet
 - **SH** is a shape factor, dimensionless

Problems with Regression Approach

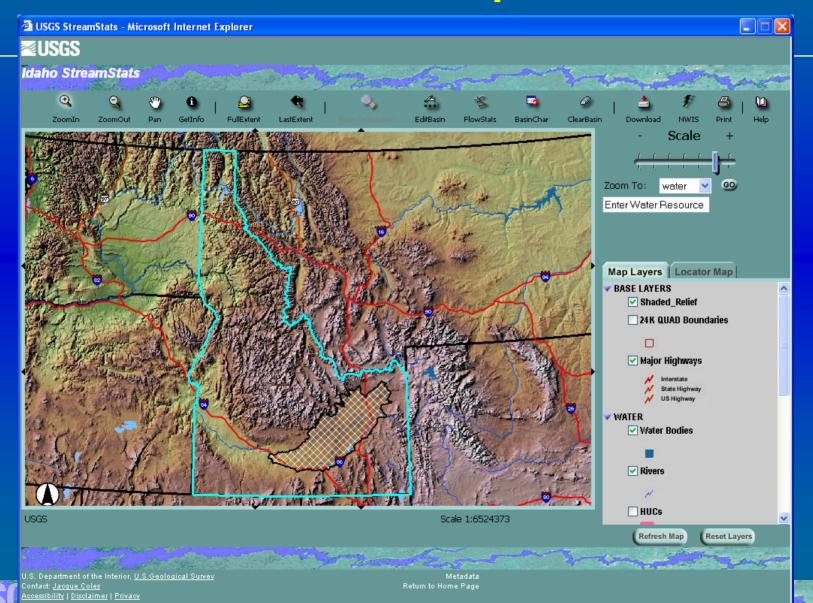
- Reports with equations can be difficult to identify and obtain
- Delineating basin boundaries and computing basin characteristics:
 - ☞ Is difficult,
 - Demands high-level skills,
 - Is very time consuming
 - Is error-prone
- Manual method can take several hours or more
- GIS methods require substantial investments of time, money, and data development
- Equations are often not used because of large efforts needed to determine basin characteristics

StreamStats Web Application


- Provides estimates of streamflow statistics, basin and climatic characteristics, and other information for user-selected points on ungaged streams
- Automatically measures basin and climatic characteristics for ungaged sites using GIS
- Provides published streamflow statistics, basin and climatic characteristics, and other information for data-collection stations

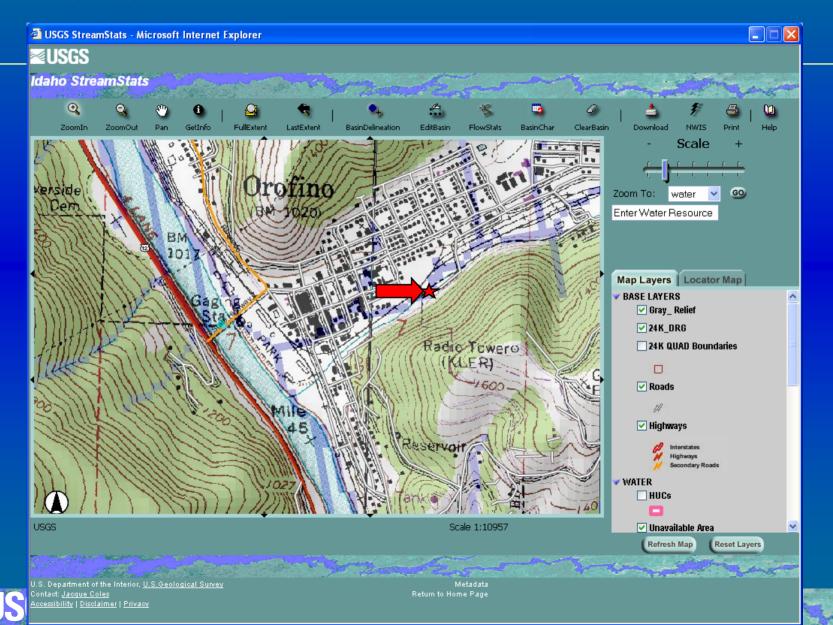
StreamStats Web Page

http://streamstats.usgs.gov

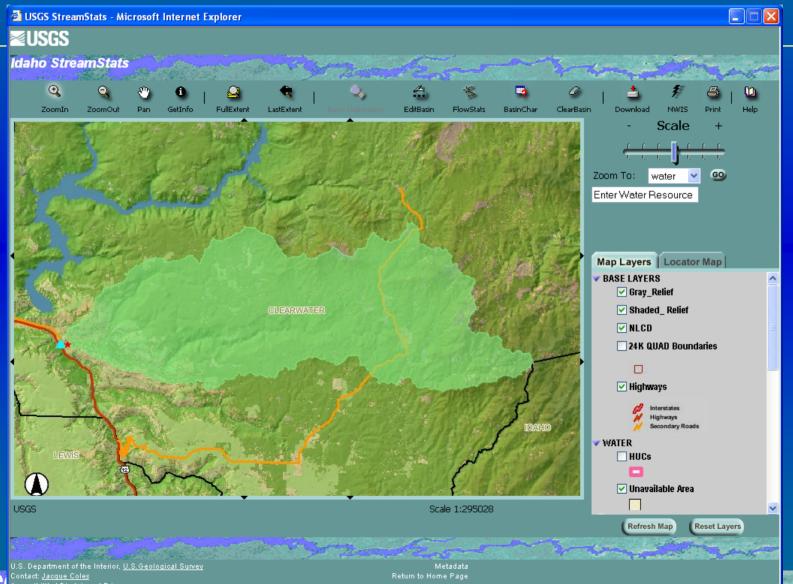

- Under construction
- Description of application
- Links to state applications
- Links to documentation

Accessibility FOIA Privacy Policies and Notices U.S. Department of the Interior [U.S. Geological Survey URL: www.streamstats.usgs.gov Page Contact Information: GS-W_Streamstats@usgs.gov Page Last Modified: 5/4/05

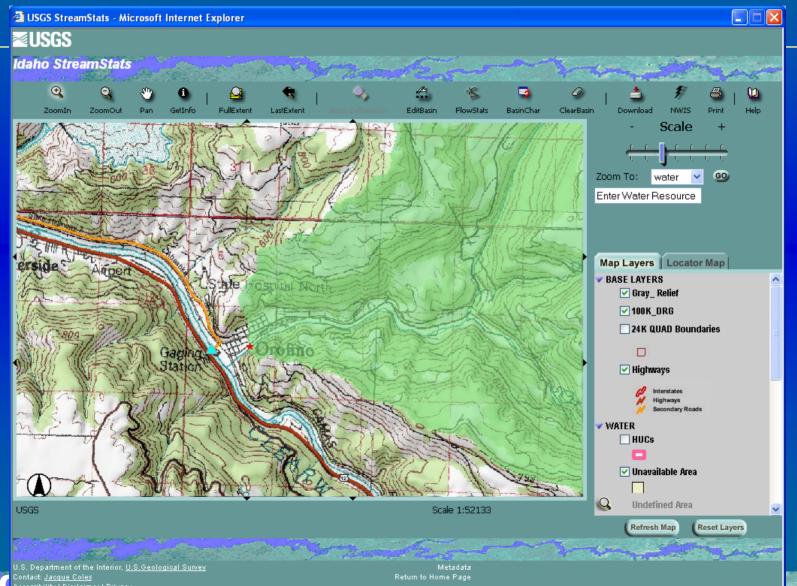
User Interface at Startup



Ungaged Site Process

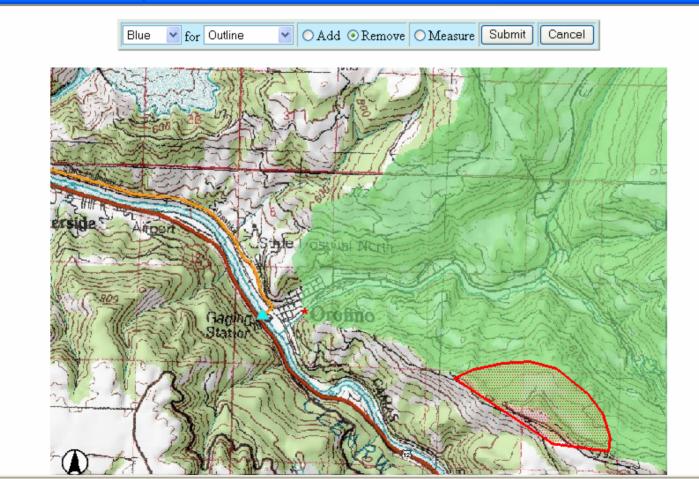

- 1. User selects point on stream network
- Point is transferred to a cell in a flow-direction grid derived from a DEM
 DEM usually is preprocessed to conform to mapped streams and previously determined drainage boundaries
- 3. GIS determines drainage boundary and presents it for review in map frame
- 4. Boundary can be edited if errors are found
- 5. GIS computes drainage area and other basin characteristics
- 6. Basin characteristics are inserted into regression equations to compute flow estimates
- 7. Flow estimates appear in pop-up window with error estimates

Ungaged Site Selection



Basinwide View of Boundary

Zoom In to Check Boundary



Edit Boundary

🔮 USGS StreamStats - Microsoft Internet Explorer

🕘 X:333292 Y:603570 (feet) [696,30]

57

🥝 Internet

Example Output for Ungaged Site

Streamstats Repo	rt - Microsoft Internel	t Explore	r					🗿 Streamstats Repor	rt - Microsoft Internet Explore	r				
<u>-</u> jle <u>E</u> dit <u>V</u> iew F <u>a</u> v	vorites <u>T</u> ools <u>H</u> elp	-					7	<u>File E</u> dit <u>V</u> iew F <u>a</u> v	rorites <u>T</u> ools <u>H</u> elp					
	NY AL	Ctar	ometote	1 Cart	7	No.		Q200	8030	47	1	3710	17400	^
USGS StreamStats			2 Array	N. S. parto		Q500	9710	47		4460	21100			
an ten tentenenenzak													21100	4
								Streamflow Sta	itistics					
Streamflo	w Statistics	s Rep	port							Standard Error	Equivalent	90-Percent Predict	ion Interval	
Datas Tua Ium 7.00	005 00.13.10							Statistic	Flow (ft ³ /s)	(percent)	years of record	Minimum	Maximum	
Date: Tue Jun 7 20 Site Location: Idał								Mean Annual Flow	Statistics					
Latitude: 46.4792								Qa	278					
Longitude: -116.24 Drainage Area: 19								January Flow-Dura	tion Statistics					1
brailiage Area. 15								Jan_Q20	271					
Peak Flow Basi	in Characteristics							Jan_Q50	91.4					
100% Peak Flow F	Region 4 (198 mi2)							Jan_Q80	44.9					
Parameter		Value	Min	M	1ax			February Flow-Dura	ation Statistics					
Drainage Area (mi2))	198	2.3	1341	8.3			Feb_Q20	445					
Mean Basin Elevation	n (ft)	3270	2955.8	746	1.3			Feb_Q50	164					
								Feb_Q80	72.8					
								March Flow-Duratio	on Statistics					i 🛛 🗕
Low Flow Basir	n Characteristics							Mar_Q20	867					í I
100% Low Flow R	egion 4 (198 mi2)							Mar_Q50	396					i 👘
Parameter			Value	Min	Max			Mar_Q80	174					i l
Drainage Area (mi2))		198	4	13418.3			April Flow-Duration	n Statistics					i i
Mean Basin Slope fro	om 30m DEM (percent)		20.8	18.7	57.2			Apr_Q20	1590					1
Mean Annual Precipi	itation (in)		37.2	15.9	64.6			Apr_Q50	1110					i 👘
Mean Basin Elevation	n (ft)	3270 (be	elow min value 3528.6)	3528.6	7461.3			Apr_Q80	693					i -
Percent Forest (per		3270 (80						May Flow-Duration						1
					May_Q20	1310					i 👘			
Warning: Some po	arameters are outside	e the sug	gested range. Estimo	ites will be exi	trapolations with	unknown errors.		May_Q50	858					i
								May_Q80	527					i i
Streamflow Sta	atistics							June Flow-Duration						
ou cumion ou			Prediction Error	Equivalent	90-Percent Pre	diction Interval		Jun_Q20	362					i i
Statistic	Flow (ft ³ /s)		(percent)	years of record	Minimum	Maximum		Jun_Q50	182					i -
Peak-Flow Statistic	CS			record				Jun_Q80	83.8					í
Q1.5		1200	73		392	2 3680		July Flow-Duration						-
Q2		1590	67		562	2 4480		Jul_Q20	67					
Q2.33		1790	64		654				38					
Q5		2730	56		1110			Jul_Q50						
		3610						Jul_Q80	25.8					
Q10			52		1550			August Flow-Durat	tion Statistics 54.8					
Q25		4870	49		2190			Aug_Q20	34.2					
Q50		5850	48		2670			Aug_Q50						
0100		6900	47		3180	15000		Aua 080	21.5		1			

5

Data-Collection Station Process

- 1. USGS data-collection stations are displayed in a map frame in user's web browser
- 2. User zooms in and selects a station of interest
- 3. Previously published information for the station is retrieved from StreamStatsDB
- 4. Pop-up window appears showing the information and references
- 5. User may also link to NWIS-Web (Implementation expected by June 2005)

Mock-up Data-Collection Site Output

IUSC5 StreamStats - Microsoft Internet Explorer Ele Edit View Favorites Iools Help Image: Back - O - M Revealed Comparison of the stream of t

Streamflow Statistics Report

USGS Station Number 01094500 Station Name NORTH NASHUA RIVER NEAR LEOMINSTER, MA

Click here to link to available data on NWIS-Web for this site.

Descriptive Information

Station Type	Gaging Station, continuous record
Regulated?	True
Period of Record	1935-present
Remarks	Regulated at low flow by mills. Flow includes diversion to basin for municipal supplies.
Latitiude, degrees	42.50176
Longitude, degrees	-71.72257
Hydrologic unit code	01070004
Local Basin	11-Nashua
County	027-Worcester
MCD	35075-Leominster city
Directions to station	1.3 miles upstream from Wekepeke Brook

Physical Characteristics

Characteristic Name	Value	Units	Citation Number
Area_of_Lakes_and_Ponds	3.3	square miles	12
Drainage_Area	110	square miles	12
Mean_Basin_Elevation	870	inches per hour	12
Mean Basin Slope ft_per_mi	40.7	feet per mile	12
Total_Stream_Length	22.7	miles	12

3	🗿 USGS StreamStats - Microsoft Internet Explorer		
	<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp		2
»	🕝 Back 👻 🕑 👻 📓 🏠 🔎 Search 👷 Fa	orites 🜒 Media 🚱 🔗 - 🕌 🗹 - 🎇 Link	» ks
	Address 👜 Z:\OSW\Streamstats\SampleGagedOutput.htm	💌 🄁	Go
^	Mean_Basin_Slope_ft_per_mi 40.7 feet Total_Stream_Length 22.7 mile	ar mile 12 12	^

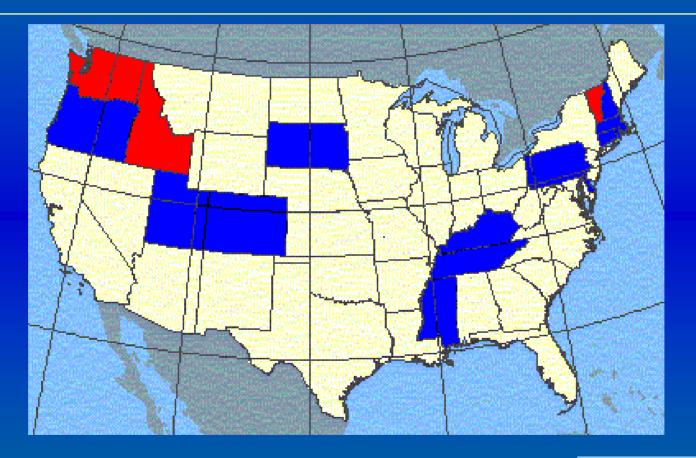
Streamflow Statistics

Statistic Name	Discharge, in cubi feet per second	² Citation Number
Peak-Flow Statistics		
Mean_Annual_Flood	683	12
10-Year_Peak_Flood	4,760	12
25-Year_Peak_Flood	6,560	12
50-Year_Peak_Flood	8,160	12
100-Year_Peak_Flood	9,990	12
500-Year_Peak_Flood	15,400	12
Low-Flow Statistics		
7-Day 2-Year Low Flow	45.4	22
7-Day_10-Year_Low_Flow	35.3	22
Flow-Duration Statistics		
10-Percent_Duration	418	16
25-Percent Duration	229	22
50-Percent Duration	126	16
70-Percent Duration	74.2	22
75-Percent Duration	67.3	22
90-Percent_Duration	49	16
95-Percent Duration	43.8	22
99-Percent Duration	34	22

Citations

Citation Number	Citation Name
12	Murphy, P.J., 2001, Evaluation of mixed-population flood-frequency analysis: American Society of Civil Engineers, Journal of Hydrologic Engineering, v. 6, no. 1, p. 62-70
22	Wandle, S.W., Jr., and Fontaine, R.A., 1984, Gazetteer of Hydrologic Characteristics of Streams in Masssachusetts Merrimack River Basin: U.S. Geolological Survey Water-Resources Investigations Report 84-4284.
16	Socolow, R.S. Leighton, C.R. Zanca, J.L., and Ramsbey, L.R., Water Resources Data Massachusetts and Rhode Island Water Year 1997: U.S. Geological Survey Water-Data Report MA-RI-97-1.

StreamStats Benefits


- Cost Time to delineate drainage boundaries and compute basin characteristics is reduced from hours to minutes
- Accuracy Measurement errors not introduced; some measurements much better; others about the same as manual methods

Consistency — Important for statistical validity

Accessibility — Special equipment and/or expertise not needed to obtain estimates

Status

Available to

State Implementation Process

- Usually done through cooperative agreements between Water Science Centers and local agencies
- Populate and quality assure StreamStatsDB
- Generate and format GIS datasets
- Test and report on accuracy of basin and climatic characteristics and equation results
- Potentially develop new equations, using GIS data to measure basin characteristics
- Possibly fund any required customization
- USGS HQ and WSC concurrence to put on Web
- Full national implementation will take several years

Mid-Atlantic Activities

Pennsylvania

Peak-flow equations implemented by Sept. '05
 Will also include low-flow equations when ready
 Delaware

Peak-flow equations implemented by March '06
 GIS datasets prepared
 All of Chesapeake Bay drainage

Want StreamStats in Your State?

- Contact your local USGS Water Science Center Chief
- Find names and contact information at <u>http://water.usgs.gov/district_chief.html</u>

