

Science and Water Availability

Robert M. Hirsch Associate Director for Water, USGS June 7, 2005

U.S. Department of the Interior U.S. Geological Survey

Role of science and technology?

To obtain maximum economic benefit from our water resources, while respecting environmental values, we need:

Technologies that help enhance supply and use resources efficiently

Scientific knowledge and tools to inform public and private decisions

4 science & technology issues that are critical to water availability

Water for ecosystem services Ground water storage depletion Climate change and water storage Supply enhancing technologies

What do we know about off-stream water use?

Water withdrawals by category

Livestock

Less than 1 percent

Domestic

Thermoelectric power

Less than 1 percent

11 percent

48 percent

Less than 1 percent

Mining

Aquaculture

5 percent

Industrial

34 percent

Irrigation

Total withdrawals and population

3 key facts about off-stream water use

- Water use remains stable despite population growth
- Chief water uses for the U.S. are power generation and agriculture: both have been stable for 20 years
- Personal water use is rising, but not faster than population growth

The Demand for Ecosystem Services is a Major Driver of the Changes in Water Allocations

Figure 2-9.—Median mean daily flow in the Platte River at Duncan, Nebraska, in 1895-1909 versus 1975-1998. (Source: U.S. Geological Survey gauge data.)

The biota now has a place at the negotiating "table"

The difficulty in agreeing on what the biota need results in ill-defined property rights, harming all interests

- When the systems Today's question were designed the is: question was:
- How much water can we reliably withdraw from the river?
- How much water do we need to leave in the river?

Science was needed then and is needed now

Role of Science: Evaluation of Ecosystem Requirements

- Old paradigm
- Minimum flow
- Static channel
- Surface water
- Single species

- New paradigm
- Whole hydrograph
- Dynamic channel
- And ground water
- Community

Lack of answers leads to Gridlock

The "pie" might be shrinking because ground water in storage is being depleted

Depletion impacts: •Wells Streamflow Riparian vegetation Subsidence Water quality •Future generations

Ground-water declines are not just a feature of the western US

Example from a confined aquifer in Southern Maryland

Figure 7. A 45-year ground-water hydrograph for confined-aquifer observation well CA Gd 6 near Solomons in Calvert County, Maryland, showing the declining water levels due to ground-water pumpage. Note the significant increase in rate of decline in the mid-1980s.

Ground water is vital to surface-water systems

Ground Water and Surface Water A Single Resource

U.S. Geological Survey Circular 1139

Influence of pumping on streamflow

Lake or wetland impacts An example from a Florida lake: before and after ground-water development

Scientific need: basin-scale coupled ground-water / surface-water models

GW/SW Interactions

- Old paradigm
- Small areas < 1 km
- Time scales of weeks to years
- Effect on streamflow

- New paradigm
- Tens of kilometers
- Time scales of days to decades
- <u>and</u> ecosystem and water quality issues

Effective water management depends on understanding these interactions **EVENT** The "pie" might be shrinking because climate warming leads to less snow-pack storage

Reliable supplies depend on storage: •Ground water •Soil water

Reservoirs

Snow pack

In parts of New England, February daily streamflow has increased over the past

Narraguagus River, Maine

While May daily streamflow has decreased

Narraguagus River, Maine

And yet: mean annual streamflow shows

Understanding snow pack dynamics and climate is crucial to water planning in many areas. This requires long data sets on precipitation, snow pack and streamflow.

The "pie" might be able to grow if technology provides for an enhanced supply

aquifer storage & recovery water reuse desalinization phreatophyte control water use technologies

There are *SCience* issues related to these *technologies*

- Geochemistry
- Hydraulics
- Botany and biophysics
- Microbiology
- Wastewater contaminants (transport, reaction, effects)
 Brine disposal (trace elements)

Science and Technology provide the basis for effective management in the face of increasing competition

- Science provides the context: status and trends of the resource
- Technology can enhance supplies and efficiency of use
- Science can provide the basis for smarter decisions through prediction of outcomes (hours to generations into the future)

"National water availability and use has not been comprehensively assessed in 25 years." GAO, 2003

At the request of Congress the USGS has initiated a pilot effort to test concepts for a National Assessment of Water Availability and Use.

USGS looks forward to working with you on these issues

- Water Availability and Use Program
- Cooperative Water Program
- National Streamflow Information Program
- Ground Water Resources Program

